De Novo Photochemical Synthesis Of Non-Symmetric Pyrenes

Aromatic fusions up to 4 rings

Why is pyrene interesting?

-HOMO/LUMO gap-3.8eV

-Inherent emission at 375-410nm

-Long lived singlet, S_1 , leading to high excimer formation (>100ns)

-Excimer Formationchanges emission to 425-550nm

-High Fluorescence Quantum Yield, ϕ_f =0.29

-Red. potential= 1.52V

- -Fluorescent Probes
- -Organic Field-Effect Transistors (OFETs)

-Organic Light-Emitting Diodes (OLEDs)

-Organic Photovoltaic cells (OPV)

-Chemical Biology

Pyrene in materials

• Uses pyrene as the core for a semiconducting material in OFET due to its fluorescence.

Diring et al., J. Am. Chem. Soc. 2009, 18177

Uses pyrene to tune fluorescence of the molecule in OLED.

Liu et al., Org. Electron. 2009, 256.

 Uses the interaction between pyrene and NO₂ as an optical sensor for Na⁺ detection.

Aoki et al., Chem. Commun. 1992, 730

Strategies for synthesis of functionalized pyrenes

R=alkyl, aryl, alkoxy, X

Summary of direct functionalization strategies

• Difficulty or complex to selectively substitute any positions beyond first substitution.

Filichev et al., Chem. Eur. J. 2008, 9968

Strategies for synthesis of functionalized pyrenes Strategy Two

Assembling pyrene from smaller units (de novo synthesis)

Biphenyl photocyclization

Laarhoven et al., J. Chem. Soc., Perkin Trans. 1972, 2074

Bis-alkyne biphenyl cyclization

Out with the old, in with the new

Strategy Two

Assembling pyrene from smaller units (de novo synthesis)

Strategy two: recent advances- beginning from naphthalene

Strategy two: recent advances beginning from benzene.

Kawade et al., Angew. Chem. Int. Ed. 2020, 14352

Summary of all current pathways to pyrene

Strategy Two

Assembling pyrene from smaller units (de novo synthesis)

One missing approach

De novo photochemical synthesis of nonsymmetric pyrenes

Short synthesis

Retrosynthetic analysis

E and Z isomers interconvert under photochemical conditions

Precedents for the first step: the Mallory cyclization

The first step is easy: the Mallory cyclization

Katz and coworkers, Tetrahedron Lett. 1986, 2231.

• 100's of examples

Precedent for the second step, is it even possible?

Katz and coworkers, Tetrahedron Lett. 1986, 2231.

Laarhoven et al., Tetrahedron 1969, 1069

Morgan et al., Tetrahedron Lett. 1970, 4347

Why is pyrene the minor product?

Redirecting reactivity: blocking a favorable reaction

Solution: The blocking groups

 Commercially available starting materials

Initial studies

Not all blocking groups are equal

A new reaction- double photocyclization followed by Ar-shift

Mechanistic background for the aryl shift

Proposed mechanism

R=Me: $\Delta G (\Delta H)$ Energies in kcal/mol, M06-2X(D3)/6-311++G(d,p) Int=UF

The blocking group is not perfect

Is sterics the solution?

New problem: the starting material is unfavorable to make— re-optimization

Larger blocking groups do not impact selectivity

Things to explore

 Find what happens with the eliminated blocking group

 Comparing relative reactivity of styryl groups

Conclusion

Acknowledgements Alabugin Group

Team Dos Santos -Angel Chu -Alexandria Palazzo -Josef Maselli

Principal Investigator -Dr. Igor Alabugin **Post-Doctorate** -Rahul Kawade **Graduate (left to right)** -Edgar Gonzalez-Rodriguez -Febin Kuriakose -Chaowei Hu -Adam Campbell -Michael Maxwell -Leah Kuhn -Quintin Elliott (not in picture) **Undergraduates (left to right)** -Morgan Skala -Curtis DeShong -Miguel Abdo -Jordan Suarez -Patricia Mehaffy

Crystallography -Xinsong Lin